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Abstract—This paper considers the problem of selecting a
set of k measurements from n available sensor observations.
The selected measurements should minimize a certain error
function assessing the error in estimating a certain m dimensional
parameter vector. The exhaustive search inspecting each of the(
n
k

)
possible choices would require a very high computational

complexity and as such is not practical for large n and k.
Alternative methods with low complexity have recently been
investigated but their main drawbacks are that 1) they require
perfect knowledge of the measurement matrix and 2) they need
to be applied at the pace of change of the measurement matrix.
To overcome these issues, we consider the asymptotic regime in
which k, n and m grow large at the same pace. Tools from
random matrix theory are then used to approximate in closed-
form the most important error measures that are commonly
used. The asymptotic approximations are then leveraged to select
properly k measurements exhibiting low values for the asymptotic
error measures. Two heuristic algorithms are proposed: the first
one merely consists in applying the convex optimization artifice
to the asymptotic error measure. The second algorithm is a
low-complexity greedy algorithm that attempts to look for a
sufficiently good solution for the original minimization problem.
The greedy algorithm can be applied to both the exact and
the asymptotic error measures and can be thus implemented
in blind and channel-aware fashions. We present two potential
applications where the proposed algorithms can be used, namely
antenna selection for uplink transmissions in large scale multi-
user systems and sensor selection for wireless sensor networks.
Numerical results are also presented and sustain the efficiency
of the proposed blind methods in reaching the performances of
channel-aware algorithms.

Index Terms—Measurement selection, blind selection, random
matrix theory, Gram random matrices, massive MIMO, wireless
sensor networks.

I. INTRODUCTION

MMEASUREMENT selection is an old concept that finds
its roots in many applications such as robotics, wireless

sensor networks and wireless communications to name a few
[1]–[3]. It aims to reduce the complexity of the estimation
problem in linear models where the n-dimensional response
vector is linearly related to the unknown m-dimensional
vector. The reduction in computational complexity is achieved
by using only the k measurements that minimize a certain
given error function assessing the quality of the selected mea-
surements. One naive approach for solving the measurement
selection problem is to go through all

(
n
k

)
possible selections
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and select the ones that present the lowest achievable value of
a given error measure. This procedure, though being optimal,
is not practical especially when high dimensional observations
are considered. In general, it seems that looking for an optimal
solution is expected to call for solving an NP-hard problem as
asserted by [1], which gives little hope of determining the
optimal solution using a polynomial complexity algorithm.
As a result, attention has turned to sub-optimal alternatives
to solve the measurement selection problem. In this vein,
genetic algorithms using some local search methods have been
proposed in [4]. Local optimization techniques have been also
proposed in [5,6]. Although these methods can have good
performance with modest complexities, they do not guarantee
any theoretically achievable bound on the performance. The
first achievable bound has been derived in [1] where the
authors in [1] resorted to convex relaxation artifice. This has
led to a convex problem that can be solved with a complexity
growing as O

(
n3
)
.

The aforementioned algorithms allow good performances
coupled with a lower complexity as compared to exhaustive
search. However, in order to accurately evaluate the overall
complexity, it is important to consider how often the selec-
tion procedure should be repeated. For fast-fading varying
linear models, the underlying measurement matrix, capturing
the linear dependence between the input and output vectors,
changes at a rapid pace. Hence, the overall complexity should
be scaled by the number of times the measurement matrix
changes over a given time window, which can result in a pro-
hibitively high computational complexity. To overcome these
issues, we propose in this work blind selection algorithms that
leverage the statistics of the measurement matrix rather than
its instantaneous realization. This can be for instance useful
when for some practical concerns, it is not possible to acquire
the measurement matrix. The main idea behind the proposed
blind methods lies in the observation that the considered error
measure depending on the random measurement matrix can
be approximated by some deterministic quantities depending
solely on the statistics of the measurement matrix. This fact
is supported by results from random matrix theory, confirm-
ing the accuracy of the approximation in large dimensional
settings. Using this theory, we show that the most used error
measures can be approximated in closed-form by deterministic
quantities depending soleley on the correlation between the
columns of the measurement matrix. Interestingly, it turns out
that, as far as the asymptotic regime is con, it concerned
the correlation matrix that holds all the information about
the best set of measurements to be selected. Particularly, it
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is shown that if the columns of the measurement matrix are
uncorrelated, any randomly selected subset of k measurements
would asymptotically exhibit the same performances. It thus
unfolds that the benefit from optimizing over the set of
measurements to be selected is more significant in case of high
correlation between the columns of the measurement matrix.

Based on the obtained asymptotic approximations of the
considered error measures, we propose two different blind ap-
proaches. The first one is mostly inspired from the work of [1]
and consists in applying the convex artifice to the asymptotic
error measures. However, the optimization of the resulting
problem might not be tractable, as there is no guarantee of
the convexity of the asymptotic error measure. We, therefore,
establish in this paper the convexity of the asymptotic error
measure, which opens up the possibility of using standard
convex optimization tools. The second algorithm is a greedy
algorithm that attempts to get close to the optimal solution
within a few iterations. Interestingly, the greedy algorithm can
be also applied to the exact error measures, and can be thus
implemented in both blind and channel-aware scenarios. It
is shown that not only the greedy algorithm presents lower
complexity but it also achieves higher performances than the
convex-relaxation based algorithm when implemented in either
blind or channel-aware modes.

The proposed algorithms can be used in many applications.
We select in this paper two potential applications where the
measurement selection problem arise. The first one concerns
the design of low complexity linear receivers for uplink large-
scale multi-user MIMO systems, better known as Massive
MIMO systems. Such systems are gaining an increasing in-
terest and constitute promising candidates for future wireless
systems, primarily due to their abilities of achieving remark-
able performance enhancements in terms of capacity, radiated
energy efficiency and link reliability [7]–[9]. However, while
the use of multiple antennas allows to significantly improve
the spatial diversity, it comes inevitably at the cost of a higher
computational complexity, which might call into question the
feasibility of such systems [10]. Besides, it is not even clear
whether the performance enhancement is worthy of using all
antenna resources. It might happen in many scenarios that
some antennas undergo severe fading, and as such, selecting a
subset of antennas will result in substantial saving in complex-
ity without sacrificing performance. Selecting these antennas
is the crucial achievement of antenna selection algorithms.
The use of these algorithms has already been advocated in
[11,12] as an efficient solution to reduce the number of RF
chains in conventional MIMO systems, leading to a significant
reduction in complexity and costs while preserving most of
the potential of full MIMO systems. The second application
concerns the problem of sensor selection in wireless sensor
networks (WSN), already extensively studied in the literature
of signal processing. A question of interest in this field, is
how to find the optimal placement of k sensors, assuming n
available sensors in different locations [13].

To sum up, the major contributions of this paper are
summarized as follows:

1) We provide accurate asymptotic approximations for the
three most used error measures, namely the Mean Square

Error (MSE), the Log Volume of the Confidence Ellip-
soid (LCE) and the Worst Case Error Variance (WEV).
These approximations depend solely on the statistics of
the measurement matrix and are shown to be convex.

2) Based on the provided approximations, we propose two
blind algorithms to perform antenna selection without
knowledge of the instantaneous measurement matrix.
The first one is based on the concept of convex relax-
ation while the second one is a greedy iterative algorithm
that attempts to get close to the optimal solution.

3) We study the complexity of both algorithms and show
that the greedy algorithm achieves quadratic complexity.

4) We select two applications in which the problem of
sensor selection arise, namely antenna selection in mas-
sive MIMO systems and sensor selection in WSN.
We show how the proposed algorithms can be used
in both applications and compare their performances
with channel aware algorithms which assume perfect
knowledge of the measurement matrix. We show that
as long as the correlation between the columns of the
measurement matrix is high, the average performance is
close to that of channel aware algorithms.

The remainder of the paper is organized as follows. In section
II, we state the measurement selection problem and present
some related works. In section III, we provide asymptotic
approximations for the asymptotic error measures, based on
which we propose two different blind algorithms to perform
measurement selection. Finally, and prior to concluding the
paper in section V, we discuss in section IV two potential
applications for the proposed blind approach.

Notations: Throughout the paper, we use the following
notations: Vectors are denoted by lower case bold letters and
matrices are denoted by bold capital letters (In is the identity
matrix of size n). For a given matrix A, we refer by [A]i,j its
(i, j)th entry, and use AT and AH to denote its transpose and
Hermitian respectively. We respectively denote by ‖.‖, det (.)
and tr (.), the spectral norm, the determinant and the trace of
a matrix. Finally, we denote by diag (a), the diagonal matrix
with diagonal elements, the entries of a.

II. PROBLEM FORMULATION AND RELATED WORKS

We consider the problem of estimating an m−dimensional
vector x ∈ Cm×1 from measurements when the observed
vector y ∈ Cn×1 is related to x by the following relation:

y = Hx + v, (1)

Herein H = {hi,j} ∈ Cn×m denotes the measurement matrix
and is assumed to be Gaussian with one-side correlation R,
i.e., H = R

1
2 W, where W ∈ Cn×m is a matrix with i.i.d

zero mean unit variance entries and v is the additive noise
vector with independent, zero mean, unit variance, circularly
symmetric complex Gaussian entries, i.e. v ∼ CN (0n×1, In).
Assuming that the number of measurements n exceeds the
signal dimension m, i.e., n > m, the estimate of x denoted
by x̂ can be recovered by using the least square (LS) estimator
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as [14]

x̂ =
(
HHH

)−1
HHy

=
(
WHRW

)−1
WHR

1
2 y

= x +
(
WHRW

)−1
WHR

1
2 v.

(2)

Clearly, the estimation error, x− x̂ is zero mean with covari-
ance:

Σ =
(
WHRW

)−1
. (3)

A. Measurement selection

Measurement selection intends to select the k best mea-
surements that are the most representative in the sense that
they constitute the set of k measurements minimizing a certain
given error. Once selected, these measurements will be used
in place of the whole available data vector. By reducing the
available number of measurements, measurement selection
inevitably induces a performance loss, but allows a reduction
in the computational complexity. This becomes all the more
important in several applications such as large-scale MIMO
systems, where the treatment of the whole number of mea-
surements received by the large antenna array might be not
possible. To mathematically formulate measurement selection,
we define the selection matrix S ∈ Rk×n as the matrix that
permits to extract k measurements from y. Let S denote
the set of indexes of cardinality k containing the indexes of
measurements to be selected. The selected measurement vector
is thus given by

yS = Sy, (4)

where S is defined as follows

[S]i,j =

{
1 j = S [i]
0 otherwise , i = 1, · · · , k. (5)

where S[i] denotes the i-th element in set S. Based on the
structure of S in (5), we have the following properties
• SST = Ik.
• STS = diag (s).

where s = {si}i=1,··· ,n is a n−dimensional vector with
entries equal to 1 at the locations given by S and zeros
elsewhere. The LS estimator x̂S obtained from using the
selected measurement vector yS is :

x̂S =
(
HHdiag(s)H

)−1
HHSTyS

Upon applying the operator defined by S, the resulting error
covariance matrix, which we denote by ΣS easily writes as

Σ(s) =
(
HHdiag(s)H

)−1
=
(
WHR

1
2 diag (s) R

1
2 W

)−1
.

(6)

It can be seen from (6) that ΣS is a Gram matrix with one
side correlation given by the matrix R

1
2 diag (s) R

1
2 .

Measurement selection consists in selecting the optimal set
S∗ with cardinality k, or equivalently vector s with only k
non-zero elements equal to 1, that minimizes a certain error
measure assessing the estimation quality. In other words, the

optimal set can be obtained as the solution of the following
problem:

s∗ = argmin
s ∈ Rn

f (Σ(s))

s.t. si ∈ {0, 1}
1T s = k

(7)

where here f denotes the considered measure function. There
have been various measures proposed in the literature [15] to
assess the estimation quality of the LS. All of them heavily
depend on the covariance matrix of the error . In this paper,
we will focus on the following ones:

1) The Mean Square Error (MSE): The mean square error
is defined as the average euclidian distance between
the estimated vector and x. When only a set of k
measurements is employed, the MSE writes as:

MSE(s) = tr
(
WHR

1
2 diag(s)R

1
2 W

)−1
(8)

2) The Log Volume of the confidence Ellipsoid (LCE)
For a Gaussian random vector x̂ in Cm with mean
x and covariance Σ, the η− confidence ellipsoid is a
multi-dimendional generalization of the η− confidence
interval. It corresponds to the minimum volume ellipsoid
that contains x̂− x with propability η and is given by:

E =
{
z : zHΣ−1z ≤ α

}
, (9)

where α = F−1
χ2
2m

(η), Fχ2
2m

being the cumulative
distribution function of a chi-squared random vari-
able with 2m degrees of freedom. The volume of the
η−confidence ellipsoid defined in (9) is (see Serfling
[15])

vol (Eα) =
(απ)

m

Γ (m+ 1)
det (Σ) , (10)

where Γ (.) is the Gamma function. It appears from 10
that the determinant of Σ plays the role played by the
variance in one dimension hence its name generalized
variance. When vector x̂ represents an estimate of a
given parameter vector, the lowest is the generalized
variance, the highest is the estimation quality. It might
be more convenient in practice to work with the log
of the volume of the η− ellispoid. A good estimate
is thus characterized by a small value of the log-
epsilloid volume, which will be confused, from now on,
with 1

m log det( 1
nΣ). We define thus the log volume of

the confidence ellipsoid associated with the vector of
selected measurement x̂S as:

LCE(s) = − 1

m
log

(
det

(
1

n
HHdiag(s)H

))
= − 1

m
log

(
det

(
1

n
WHR

1
2 diag(s)R

1
2 W

))
3) Worst Case Error Variance (WEV): The worst case error

variance (WEV) quantifies the maximum variance of
error over all directions. It corresponds to the maximum
eigenvalue of the error covariance matrix. The WEV
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associated with the vector of selected measurement x̂S
is thus defined as 1:

WEV(s) =
1

λmin

(
1
mWHR

1
2 diag(s)R

1
2 W

)
B. Related Works

The main literature related to the present paper is repre-
sented by the work in [1], The main idea in this work relies
on the observation that it is the non-convex nature of the
constraints, requiring the selection vector s to possess elements
in {0, 1} that makes problem (7) intractable. To overcome this
issue, [1] solves instead a convex related problem obtained by
substituting the Boolean constraints si ∈ {0, 1} by the convex
constraints 0 ≤ si ≤ 1:

ŝ = arg min
s ∈ Rn

f(Σ(s))

s.t. 1T s = k

0 ≤ si ≤ 1, i = 1, · · · , n.

(11)

It is worth mentioning that the output of the optimization
in (11) yields a higher value than the maximum objective
function in (7), and as such can be viewed as a global upper
bound on the performance. Moreover, the optimal vector ŝ can
contain real values not necessarily zeros and ones. In order to
obtain the indexes of the selected measurements, one should
order the entries of ŝ and then assign ones to the k greatest
values and zeros to the remaining entries. This results in a
feasible solution to the selection problem in (7) which yields
a lower bound on the objective function.
To solve the problem in (11), one can resort to interior-point
methods which require few tens of iterations to converge
where each iteration is performed with a complexity of O

(
n3
)

computations. For more details on convex relaxation, the
readers are referred to [1] and references therein.

III. BLIND MEASUREMENT SELECTION

Previous works dealing with sensor selection have essen-
tially been based on the assumption of perfect knowledge
of the measurement matrix H. This not only might not be
satisfied in practice but also can make the application of the
previously proposed algorithms more difficult as they should
be applied at every change in the measurement matrix H.

To overcome this issue, we propose in this work blind
methods that leverage the knowldege of the channel statistics
to perform the selection. These methods rely heavily on
advanced results of random matrix theory.

Main Idea: The idea behind the proposed methods hinges
on the fact that as the dimensions of the channel matrix grow
large, quantities depending on the measurement matrix be-
come more predictable in that they can be well-approximated
by deterministic quantities depending only on the channel
statistics. Such deterministic quantities can be characterized by
resorting to tools from random matrix theory. In light of this
observation, we propose in this work to compute, in closed

1The normalization factor 1
m

is considered herein to comply with the
asymptotic growth regime of random matrix theory

form, accurate approximations of the three error measures,
namely the MSE, LCE and WEV. As we will see later, the
asymptotic analysis can be leveraged to blindly select good
sets of measurements.

A. Asymptotic analysis of the error measures

In this section, we determine, in closed form, accurate
approximations for the MSE, LCE and WEV. For technical
purposes, we shall consider the following growth regime:

Assumption 1. We assume both that n and m grow large
while their ratio n

m satisfies:

n

m
→ c ∈ (1,∞)

We also assume that k grows large with:

0 < lim inf
k

n
< lim sup

k

n
< 1.

and
lim inf

k

m
> 1.

The channel matrix H is assumed to follow the following
statistical model:

Assumption 2. H ∈ Cn×m is complex Gaussian matrix with
one-side correlation R, i.e,

H = R
1
2 W

where W is a matrix with i.i.d. normally distributed entries
having zero-mean and unit variance. Moreover, the matrix R
satisfies the following conditions:

1) R has a bounded spectral norm, i.e,

sup
n
‖R‖ <∞

2) The normalized trace of R satisfies:

inf
n

1

n
trR > 0.

With these assumptions at hand, we are ready to analyze
the asymptotic behavior for the MSE and LCE.

Lemma 1. [16] Let δ be the unique solution to the following
equation

δ = m
(

tr
[
Rdiag(s) (In + δRdiag(s))

−1
])−1

(12)

Define MSE(s) as
MSE(s) = δ

Then, under assumptions 1 and 2, MSE(s) satisfies

MSE(s)−MSE(s)
a.s.−−−−→
n→∞

0.

Lemma 2. [17, Proposition 4.2] Let δ be defined as in (12).
Define LCE(s) as

LCE(s) = − 1

m
log det (In + δRdiag(s)) + log(cδ) + 1
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Then, under assumptions 1 and 2,

LCE(s)− LCE(s)
a.s.−−−−→
n→∞

0

To obtain an asymptotic equivalent for the WEV, the fol-
lowing technical assumption is additonally needed:

Assumption 3. Let λ1(s), · · · , λn(s) be the eigenvalues
of R

1
2 diag(s)R

1
2 .We assume that the probability measure

1
n

∑n
i=1 δλi(s) converge weakly to a probability measure µs.

Moreover, we assume all the eigenvalues of R
1
2 diag(s)R

1
2 to

be almost surely contain in the support of µs Supp(µs) or
equivalently:

max
i=1,··· ,n

dist(λi(R
1
2 diag(s)R

1
2 ), µs))

a.s.−−−−→
n→∞

0

With this assumption at hand, the WEV can be approxi-
mated as

Lemma 3. [18] Under assumptions 1, 2 and 3,

WEV(s)−WEV(s)
a.s.−−−−→
n→∞

0

where WEV(s) is given by:

WEV(s) = −1

η
+

1

m
tr
[
R diag (s) (I + ηR diag (s))

−1
]

and η is the solution to the following equation in (0,∞)

η2 =

(
1

m
tr

[(
R

1
2 diag(s)R

1
2

)2 (
In + ηR

1
2 diag(s)R

1
2

)−2])−1
.

B. Blind selection techniques

The asymptotic analysis carried out in the previous section
is now leveraged to build efficient blind methods for measure-
ment selection. Our blind approaches are based on solving the
following selection problem:

s∗ = argmin
s

f(s)

s.t. 1T s = k

si ∈ {0, 1} , i = 1, · · · , n.

(13)

where f refers to one of the asymptotic approximations for
MSE, LCE or the WEV, that have been computed in the
previous section. We present in the sequel two different meth-
ods. The first one, termed blind convex relaxation technique
relies on the use of the convex relaxation approach used in
[1], while the second one, is merely based on the use of a
greedy algorithm that solves the Problem in (13)

1) Blind convex relaxation technique: This method builds
upon the use of the convex relaxation concept. It replaces
the boolean constraints in (13) by the convex constraints
0 ≤ si ≤ 1. In doing so, we obtain the following
optimization problem:

s∗ = argmin
s

f(s)

s.t. 1T s = k

0 ≤ si ≤ 1, i = 1, · · · , n.

(14)

It is worth mentioning that, although the non-convex
relaxation techniques are now replaced by the convex

ones 0 ≤ si ≤ 1, it is not clear whether the obtained
problem (14) remains convex. This is because we are
not sure whether the objective function, representing the
almost sure deterministic equivalent of one of the error
measures is still (14) convex. The following theorem
answers this question and establishes the convexity of
the deterministic approximation of the MSE, LCE and
WEV.
Theorem 1. Define f as:

f : Rn+ → R+

s 7→ f(s)

where f is either MSE(s), LCE(s) or WEV(s). Then,
f is convex in Rn+.

Proof: See Appendix
Based on this Theorem, one can thus resort to standard
convex tools to solve Problem (14). This step often
requires the knowldege of the gradient of f with respect
to s which can be found in the top of the next page
where Rs = R

1
2 diag (s) R

1
2 (A proof can be found in

Appendix A) The solution of (14) is a vector with real
positive values not necessarily zeros and ones. To obtain
the indexes of the selected measurements, we should
order its entries and then set the greatest ones to 1 and
set the remaining to zero.

2) Greedy blind algorithms: Greedy algorithms have been
widely applied to the framework of wireless commu-
nications, particularly in scheduling where the aim is
to select the set of users that maximizes a certain
utility function [19]. The use of greedy algorithms for
measurements selection is, however, less common. In
order to stress the wide scope of applicability of the
proposed algorithm, we consider here the problem of
selecting the index of measurements that minimizes a
pre-defined error measure f (H,S), where H is some
information about the measurement matrix H 2 and S
is a set of k indexes from {1, · · ·n}. The principle of
the proposed greedy algorithm is as follows. First, we
start by choosing an initial candidate set S obtained
by randomly selecting a pattern (set of measurements
indexes) of size k. Then, select from the set of the
remaining indexes (S = {1, · · · , n} \S), the first value
that, when replaced with one of the indexes in S leads
to a reduction in f (H,S). When this occurs, S is
updated by replacing the index that presents the largest
reduction in f (H,S). This procedure is repeated for
a predetermined number of iterations K. The corre-
sponding algorithm is detailed in Algorithm 1. It can
be applied for any metric f (H,S). This implies that
the greedy algorithm might be considered as a channel
aware algorithm when H is given by H and entirely
blind when H contains only statistical information about
the channel.
Proposition 1. The greedy algorithm described by the
steps of Algorithm 1 is guaranteed to converge.

2H could be for example the statistics given by R or the full channel
matrix H.
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∂MSE (s)

∂si
=

∂δ

∂si
= δ′i = −

δ
[
R

1
2 (I + δRs)

−2
R

1
2

]
i,i

tr
[
Rs (I + δRs)

−2
] .

∂LCE (s)

∂si
= (1− c) δ

′
i

δ
+

δ′i
mδ

tr (I + δRs)
−1 − δ

m

[
R

1
2 (I + δRs)

−1
R

1
2

]
i,i
.

∂η

∂si
= η′i = −η

(
tr
[
Rs (I + ηRs)

−2
]
− tr

[
Rs (I + ηRs)

−3
])−1([

R
1
2 (I + ηRs)

−2
R

1
2

]
i,i
−
[
R

1
2 (I + ηRs)

−3
R

1
2

]
i,i

)
.

∂WEV (s)

∂si
= − (c− 1) η′i

η2
+

η′i
mη2

[
2 tr (I + ηRs)

−1 − tr (I + ηRs)
−2
]

+
1

m

[
R

1
2 (I + ηRs)

−2
R

1
2

]
i,i
.

Algorithm Complexity
Convex Optimization(Channel-aware) N ×O

(
n3

)
Convex Optimization(Blind) O

(
n3

)
Greedy(Channel-aware) K ×N ×O

(
n2

)
Greedy(Blind) K ×O

(
n2

)
Table I: Computational complexity of the different proposed
algorithms.

Proof: By construction of Algorithm 1, the compu-
tation metric f (H,S) decreases on each iteration. Since
the performance is bounded by the optimal performance
achieved through the exhaustive search, the algorithm
produces a decreasing bounded sequence, which imply-
ing its convergence.

C. Complexity Analysis

In this part, we discuss the complexity of the different
selection algorithms. Consider first the case of full blind
methods. The convex approach requires O(n3) operations
which is the cost of using interior-point methods. As for the
greedy approach, the computational complexity is governed
by two factors. i) the complexity needed at every iteration
and ii) the total number of iterations until convergence, which
we denote by K. At every iteration, we need to perform
k (n− k) computations, thus in total, we need K × k (n− k)
computations. As k and n are assumed to be commensurable,
the computation complexity is thus K ×O

(
n2
)
. Now, if the

greedy approach and convex relaxation based techniques are
applied when the channel is perfectly known, complexity has
to be multiplied by N which represents the number of times
over which the channel changes. To sum up, we present the
complexity achieved by the proposed selection algorithms in
Table I in both full blind and CSI aware scenarios. Figure
1 represents the MSE performance achieved by the greedy
algorithm for both cases (channel-aware and blind) as a
function of the number of iterations. For both cases, the
greedy algorithm requires a number of iterations, K = 2 to
converge. This value of K will be implemented in all the next
simulations for the greedy algorithm.

IV. POTENTIAL APPLICATIONS

In this section, we show two potential applications in
which the proposed blind measurement selection algorithms

0 0.5 1 1.5 2 2.5 3 3.5 4
# of iterations

-18

-16

-14

-12

-10

-8

-6

M
S

E
 (

dB
)

Greedy (Blind)
Greedy (channel-aware)

K = 2

Figure 1: Average MSE performance (over 100 realizations) of
the greedy approach for both cases (channel-aware and blind)
as function of the number of iterations. R follows the model
in (17) (m = 30, n = 100, k = 50 and d = 2).

can be applied to help reducing the computational cost. The
first application concerns antenna selection in massive MIMO
systems while the second focuses on the problem of sensor
selection in WSN. In the following, we provide a detailed de-
scription of the system model in each application and analyze
the performance in terms of the error measures proposed in
section II.

A. Antenna Selection for Single-cell Uplink Massive MIMO
Systems

Consider the uplink of a single cell MU-MIMO system in
which m single-antenna users are served by a single base
station (BS) equipped with n antennas with m < n, as
sketched in Figure 2. Assuming that the users’ signals are
perfectly synchronized in time and frequency, the received
vector at the BS is given by

y =
√
ρHx + e, (15)



7

where y ∈ Cn×1 is the received vector at the BS, ρ is the
average transmit power per user and x ∈ Cm×1 is the data
vector. Matrix H = {hi,j} ∈ Cn×m denotes the narrow-band
uplink channel matrix where hi,j is the channel coefficient
between the j-th user and the i-th BS’s antenna. Moreover,
we assume that the random channel H exhibits the one-sided
Kronecker model given by

H = R
1
2 W, (16)

where W ∈ Cn×m is a matrix with i.i.d circularly sym-
metric zero mean unit-variance complex Gaussian entries, R
models the spatial receive correlation matrix, whose elements
represent the correlation between the antennas of the BS
and e denotes noise vector at the BS with i.i.d circularly
symmetric zero mean unit-variance complex Gaussian entries,
i.e., e ∼ CN (0, In). At the receiver side, the BS estimates the
transmitted vector x using y. Several detection procedures can
be used, among which are the optimal maximum likelihood
(ML) detector and the least squares. The latter achieves a good
balance between complexity and performance. In communica-
tion parlance, it is referred to as zero-forcing (ZF) detection
and is given by

x̂ =
1
√
ρ
H†y,

where H† =
(
HHH

)−1
HH is the pseudo-inverse of H. Even

with the use of a ZF detector in place of the optimal ML
decoder, the complexity of the decoding might be prohibitively
high as a result of the high number of antennas n. Antenna
selection appears thus as a valuable technique that can allow
decoding with a lower complexity. In this respect, we evalu-
ate the performance of the aforementioned antenna selection
procedures for this practical scenario.

BS

1

2

n

user 2

user m

user 1

Hy x

Antenna selection

Figure 2: System model of an uplink MU-MIMO system
composed of a BS equipped with n antennas and serving m
single-antenna users.

Numerical Example: In all experiments, we assume that the
number of users m is 30 and the total budget of antennas is

15 20 25 30 35 40 45 50 55 60 65 70
# of selected sensors (k)

101

102

103

R
u
n
-T

im
e
(s
ec
on

d
s)

Greedy(channel-aware)

Greedy(Blind)

Convex(channel-aware)

Convex(Blind)

Figure 3: Run-time in seconds vs the number of selected
antennas k for the considered selection algorithms.

n = 100. We also set the SNR to ρ = 20 dB. The following
spatial correlation model [20] is considered:

Ri,j = exp
(
−0.05.d2 (i− j)2

)
, 1 ≤ i, j ≤ n. (17)

that models a broadside Gaussian power azimuth spectrum
with a root-mean-square spread of 2◦ where d corresponds to
the antenna separation in wavelength units. The greedy and the
convex relaxation based algorithms are considered in channel-
aware (H = H) and fully blind scenarios (H = R). Figure
4 reports the achieved averaged MSE (over 100 realizations)
for all proposed selection algorithms along with the random
selection algorithm that randomly picks a set of k antennas
out of n. As a major observation, we note that when the
correlation between antennas is low (d = 4), the proposed
blind algorithms are not that advantageous as compared to the
random selection algorithm. This is kind of expected since
the rows of H become almost statistically independent and
identically distributed. They are thus statistically equivalent
and selecting any k rows would asymptotically achieve the
same MSE, as can be evidenced from the deterministic equiv-
alent of the MSE shown in Lemma 1. However, with the
impact of correlation becoming more important (d ↓), the
gain of blind approaches over the random selection approach
increases. They constitute thus a valuable option, given the fact
that they only entail a loss of a up to 1 dB as compared to
channel-aware algorithms. This can be clearly seen in Figure
5, where we plot the average MSE against the antennas’
separation d. It is worth mentioning that for d = 1 and d = 2,
the proposed blind greedy approach outperforms the channel-
aware convex approach. This may sounds counter intuitive, but
this is in fact due to the quantization effect at the output of the
relaxed optimization problem. Also, it is worth mentioning that
the blind greedy algorithms perform antenna selection at the
pace of the variation of the large scale statistics. This must
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Figure 4: Average MSE achieved by the proposed selection techniques versus k for different values of the antennas’ separation
d.

be compared with the channel aware algorithms which are
required to perform antenna selection for every channel real-
ization. A high reduction in the computational complexity is
thus achieved as evidenced by Figure 3, showing the run-time
in seconds consumed by the different selection algorithms. All
in all, it appears that the proposed blind selection techniques
present in reality a better trade-off between complexity and
performance.

B. Sensor Selection in WSN

We consider a wireless sensor network (WSN) with total
number of n = 100 sensor nodes sensing a phenomena of
dimension m = 30 where sensors are randomly deployed over
a circular area of radius 30m. Thus, we have the same linear
system as in (1). Unlike the previous application, we assume
that the rows of H are statistically independent and consider
the correlation in the measurement noise. The error covariance
matrix in this case becomes

Σ =
(
WHΦ−1W

)−1
, (18)

where Φ is the noise covariance matrix given by [21]

Φi,j = σ2 exp
(
−ρ ‖Si − Sj‖2

)
, 1 ≤ i, j ≤ n, (19)

where ‖Si − Sj‖2 denotes the Euclidean distance between
nodes’ locations in the 2D plane Si and Sj , σ2 = 1 and ρ
is the correlation parameter that controls the strength of the
spatial correlation. Obviously, a larger ρ results in a weaker

1 1.5 2 2.5 3 3.5 4
Antenna’ separation (d)

-20

-18

-16

-14

-12

-10

-8
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-4

-2

M
S
E
(d
B
)

Greedy (channel-aware)
Greedy (Blind)
Convex (channel-aware)
Convex (Blind)
Random Selection

Figure 5: Average MSE achieved by the proposed selection
techniques versus the antennas’ separation d with k = 50.

correlation and vice-versa. As shown in (18), Σ is function
of Φ−1 which presents a slight difference as compared to the
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Figure 7: Average LCE achieved by the proposed selection
techniques versus the correlation parameter ρ in the case of
WSN with k = 50.

previous application, where we use Φ−1 instead of R 3.
We examine the performance in terms of the MSE as well

as the LCE and the WEV. As shown in Figure 6, similar
observations to the application of massive MIMO can be
conducted. We notice that increasing the correlation (ρ ↓)
results in a better performance of the proposed blind selection
algorithms as compared to the random selection algorithm and
vice versa. We also observe that the proposed blind convex
approach fails to achieve a good performance for both the MSE
and the WEV and yields a performance that is worse than that
of random selection. This is due to the same quantization effect
as explained in the case of massive MIMO. In Figures 7 and 8,
we show the performance of the LCE and the WEV against the
correlation parameter ρ respectively. Figures 7 and 8 clearly
show that the performance for both the LCE and the WEV
improves with increasing the correlation (ρ ↓ ) for the proposed
blind approach. This is suitable in such application, since a
central node can perform sensor selection without knowledge
of the channel matrix which may require a huge overhead.

V. CONCLUSION

In this paper, we introduced blind techniques for mea-
surement selection. In particular, we showed that using tools
from random matrix theory, it is possible to asymptotically
approximate error measures that are commonly used in this
context. As such, perfect knowledge of the measurement
matrix is not needed and only statistics are required to perform
measurement selection. We proposed two techniques: the first
is based on a greedy approach and the second is based on

3All the derived results concerning the asymptotic equivalents and their
convergence can be applied in a straightforward manner to the case R =
Φ−1.

10−3 10−2 10−1

−15

−10

−5

0

5

Corrleation parameter ρ

W
E

V
(d

B
)

Greedy (channel-aware)
Greedy (Blind)
Convex (Blind)
Random Selection
Convex (channel-aware)

Figure 8: Average WEV in dB achieved by the proposed
selection techniques versus the correlation parameter ρ in the
case of WSN with k = 50.

a convex relaxation heuristic. The proposed blind selection
techniques have been tested in two applications related to
wireless communications: the first is antenna selection in
uplink multiusers massive MIMO systems and the second
is sensor selection in wireless sensor networks. Numerical
results showed that the blind techniques have a comparable
performance to techniques that require full knowledge of the
measurement matrix, especially at high correlation.
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APPENDIX A

GRADIENT DERIVATION OF THE DIFFERENT
DETERMINISTIC EQUIVALENTS

Useful Lemmas

Inversion Lemma: For A an invertible square matrix and
column vector u such that 1 + uTA−1u 6= 0, we have(

A + uuT
)−1

= A−1 − 1

1 + uTA−1u
A−1uuTA−1.

(20)

det
(
A + uuT

)
= det (A)

(
1 + uTA−1u

)
. (21)

Implicit Function Theorem: Let f : U × V → R be a
continuously differentiable function and let g : U → V be the
implicit function defined as follows

{(x, g (x)) |x ∈ U} = {(x,y) ∈ U × V |f (x,y) = c} .
(22)

Then, g is continuously differentiable and

∂g

∂xi
(x) = −

(
∂f

∂y
(x, g (x))

)−1
∂f

∂xi
(x, g (x)) . (23)

Some Useful Notations

• Rs = R
1
2 diag (s) R

1
2 .

• ri is the ith column of R
1
2 .

• Ψi = Rs − sirirTi .

Gradient of the MSE

For the MSE, we have the following fixed-point equation
in terms of δ

δ tr
[
Rs (I + δRs)

−1
]
−m = 0.

Define

f (s, y) = y tr
[
Rs (I + yRs)

−1
]
−m

= n−m− tr
[
(I + yRs)

−1
]
.

Then,

∂f

∂y
(s, y) = tr

[
Rs (I + yRs)

−2
]
.

On the other hand

tr
[
(I + yRs)

−1
]

= tr
(
I + yΨi + ysirir

T
i

)−1
= tr (I + yΨi)

−1 − ysir
T
i (I + yΨi)

−2
ri

1 + ysirTi (I + yΨi)
−1

ri

Thus,

∂f

∂si
(s, y) =

yrTi (I + yΨi)
−2

ri(
1 + ysirTi (I + yΨi)

−1
ri

)2
= yrTi (I + yRs)

−2
ri

= y
[
R

1
2 (I + yRs)

−2
R

1
2

]
i,i

Finally,

δ′i =
∂δ

∂si
= −

δ
[
R

1
2 (I + δRs)

−2
R

1
2

]
i,i

tr
[
Rs (I + δRs)

−2
] .

and

∂MSE (s)

∂si
= −

δ
[
R

1
2 (I + δRs)

−2
R

1
2

]
i,i

tr
[
Rs (I + δRs)

−2
] .

Gradient of the LCE

The LCE converges a.s. to the following quantity

LCE (s) = − 1

m
log det (I + δRs) + log (cδ) + 1

= − 1

m
log |I + δΨi|

− 1

m
log
(

1 + δsir
T
i (I + δΨi)

−1
ri

)
+ log (cδ) + 1.

We have

∂

∂si

1

m
log |I + δΨi| =

δ′i
m

tr
[
Ψi (I + δΨi)

−1
]
.

and

∂

∂si

1

m
log
(

1 + δsir
T
i (I + δΨi)

−1
ri

)
=

δ
mrTi (I + δΨi)

−1
ri +

δ′isi
m rTi (I + δΨi)

−2
ri

1 + δsirTi (I + δΨi)
−1

ri

=
δ

m

[
R

1
2 (I + δRs)

−1
R

1
2

]
i,i

+
δ′isi
m

[
R

1
2 (I + δRs)

−2
R

1
2

]
i,i

1− δsi
[
R

1
2 (I + δRs)

−1
R

1
2

]
i,i
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Finally,

∂LCE (s)

∂si
= − δ

′
i

m
tr
[
Ψi (I + δΨi)

−1
]

−
δ
mrTi (I + δΨi)

−1
ri +

δ′isi
m rTi (I + δΨi)

−2
ri

1 + δsirTi (I + δΨi)
−1

ri

+
δ′i
δ
.

= − δ
′
i

m
tr
[
Ψi (I + δΨi)

−1
]

− δ

m

[
R

1
2 (I + δRs)

−1
R

1
2

]
i,i

− δ′isi
m

[
R

1
2 (I + δRs)

−2
R

1
2

]
i,i

1− δsi
[
R

1
2 (I + δRs)

−1
R

1
2

]
i,i

+
δ′i
δ

= (1− c) δ
′
i

δ
+

δ′i
mδ

tr (I + δRs)
−1

− δ

m

[
R

1
2 (I + δRs)

−1
R

1
2

]
i,i

∂LCE (s)

∂si
= (1− c) δ

′
i

δ
+

δ′i
mδ

tr (I + δRs)
−1

− δ

m

[
R

1
2 (I + δRs)

−1
R

1
2

]
i,i

Gradient of the WEV

The WEV converges a.s. to the following quantity

WEV (s) = −1

η
+

1

m
tr
[
Rs (I + ηRs)

−1
]
,

where

η2 tr
[
R2

s (I + ηRs)
−2
]
−m = 0.

Define

f (s, y) = y2 tr
[
R2

s (I + yRs)
−2
]
−m

= n−m+ tr
[
(I + yRs)

−2
]
− 2 tr

[
(I + yRs)

−1
]

Then,

∂f

∂y
(s, y) = 2y tr

[
R2

s (I + yRs)
−2
]
− 2y2 tr

[
R3

s (I + yRs)
−3
]
.

Note that

(I + yRs)
−1

=
(
I + yΨi + ysirir

T
i

)−1
= (I + yΨi)

−1

− ysi (I + yΨi)
−1

rir
T
i (I + yΨi)

−1

1 + ysirTi (I + yΨi)
−1

ri

Thus,

tr (I + yRs)
−2

= tr (I + yΨi)
−2

+
y2s2i r

T
i (I + yΨi)

−2
rir

T
i (I + yΨi)

−2
ri(

1 + ysirTi (I + yΨi)
−1

ri

)2
− 2

ysir
T
i (I + yΨi)

−3
ri

1 + ysirTi (I + yΨi)
−1

ri
.

Therefore,

∂f

∂si
(s, y) =

2yrTi

[
(I + yΨi)

−2 − (I + yΨi)
−3
]

ri(
1 + ysirTi (I + yΨi)

−1
ri

)2
+

2y2si

[
rTi (I + yΨi)

−2
ri

]2
(

1 + ysirTi (I + yΨi)
−1

ri

)3 .
Thus,

η′i =
∂η

∂si

= −
(

2η tr
[
R2

s (I + ηRs)
−2
]
− 2η2 tr

[
R3

s (I + ηRs)
−3
])−1

×

[
2ηrTi

[
(I + ηΨi)

−2 − (I + ηΨi)
−3
]

ri(
1 + ηsirTi (I + ηΨi)

−1
ri

)2
+

2η2si

[
rTi (I + ηΨi)

−2
ri

]2
(

1 + ηsirTi (I + ηΨi)
−1

ri

)3
]

= −
(

tr
[
Rs (I + ηRs)

−2
]
− tr

[
Rs (I + ηRs)

−3
])−1

× η
([

R
1
2 (I + ηRs)

−2
R

1
2

]
i,i
−
[
R

1
2 (I + ηRs)

−3
R

1
2

]
i,i

)
Finally,

∂WEV (s)

∂si
= − (c− 1) η′i

η2
+

η′i
mη2

×
[
2 tr (I + ηRs)

−1 − tr (I + ηRs)
−2
]

+
1

m

[
R

1
2 (I + ηRs)

−2
R

1
2

]
i,i

APPENDIX B
PROOF OF THEOREM 1

We prove the convexity of the MSE using a similar argu-
ment as the one proposed in [22]. Let p be a non negative
integer, and W̃ be a np ×mp matrix with i.i.d CN (0, 1)−
distributed entries. For s ∈ Rn+, let R (s) = R

1
2 diag (s) R

1
2

and

R̃ (s) = Ip ⊗R (s) ,

where ⊗ is the Kronecker product of matrices. Then, R̃ is
a np × np positive definite block diagonal matrix. Since p
affects both dimensions m and n at the same pace, we have
the following convergence

lim
p→∞

tr

[(
W̃HR̃ (s) W̃

)−1]
= M̃SE (s) , (24)
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where M̃SE
(
R̃ (s)

)
= δ̃ (s) is solution to the following fixed-

point equation

δ̃ (s) =
mp

tr

[
R̃ (s)

(
I + δ̃ (s) R̃ (s)

)−1] . (25)

Using the block-diagonal structure of R̃ (s), we have(
I + δ̃ (s) R̃ (s)

)−1
= Ip ⊗

(
I + δ̃ (s) R (s)

)−1
.

Then,

R̃ (s)
(
I + δ̃ (s) R̃ (s)

)−1
= [Ip ⊗R (s)]

×
[
Ip ⊗

(
I + δ̃ (s) R (s)

)−1]
= Ip ⊗

[
R (s)

(
I + δ̃ (s) R (s)

)−1]
Thus,

tr

[
R̃ (s)

(
I + δ̃ (s) R̃ (s)

)−1]
= p tr

[
R (s)

(
I + δ̃ (s) R (s)

)−1]
and,

δ̃ (s) =
m

tr

[
R (s)

(
I + δ̃ (s) R (s)

)−1]
= MSE (s) .

In other words,

lim
p→∞

tr

[(
W̃HR̃ (s) W̃

)−1]
= MSE (s) . (26)

As a matter of fact, MSE (s) is the pointwise limit of convex
functions, which implies that it is also convex. The proof of
convexity of the LCE and the WEV follow using the same
argument. This concludes the proof of Theorem 1.
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